CNN
Tensorflow - CNN 모델 예제
이미지를 보고 인간인지 말인지 분류하는 모델을 만들어보려 한다. 1. 연습용 이미지 다운로드 !wget --no-check-certificate \ https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip \ -O /tmp/horse-or-human.zip !wget --no-check-certificate \ https://storage.googleapis.com/laurencemoroney-blog.appspot.com/validation-horse-or-human.zip \ -O /tmp/validation-horse-or-human.zip 2. 압축 풀기 import zipfile # 파일을 불러옴 file..
Convolution Neural Network(CNN, 합성곱 신경망) 개념
1. Convolution Neural Network (CNN) 필터링 기법을 인공신경망에 적용(Convolution 작업)하여 이미지를 효과적으로 처리 할 수 있는 기법 행렬로 표현된 필터의 각 요소가 데이터 처리에 적합하도록 자동으로 학습되는 과정을 통해 이미지를 분류하는 기법 2. 심층신경망(DNN), 합성곱신경망(CNN)의 차이 심층 신경망 (DNN) 1차원의 데이터로 학습 다차원일 경우 flatten 작업을 통해 1차원으로 변경, 이미지의 경우 공간적/지역적 정보가 손실 추상화 과정 없이 바로 연산 과정으로 넘어가기 때문에 학습 시간과 효율성이 저하 합성곱 신경망 (CNN) 그대로의 데이터로 학습 공간적/지역적 정보 유지 이미지 전체보다는 부분을 보는 것, 이미지의 한 픽셀과 주변 픽셀들의 연관..